Friday, April 18, 2014

Rainbow!




A rainbow is an optical and meteorological phenomenon that is caused by both reflection and refraction of light in water droplets in Earth's atmosphere, resulting in a spectrum of light appearing in the sky. It takes the form of a multicolored arc. Rainbows caused by sunlight always appear in the section of sky directly opposite the sun.
All rainbows are full circles; however, the average observer only sees approximately the upper half of the arc, the illuminated droplets above the horizon from the observer's line of sight.
Rainbows can be observed whenever there are water drops in the air and sunlight shining from behind at a low altitude angle. The most spectacular rainbow displays happen when half the sky is still dark with raining clouds and the observer is at a spot with clear sky in the direction of the sun. The result is a luminous rainbow that contrasts with the darkened background.
The light is first refracted entering the surface of the raindrop, reflected off the back of the drop, and again refracted as it leaves the drop. The overall effect is that the incoming light is reflected back over a wide range of angles, with the most intense light at an angle of 42°. The angle is independent of the size of the drop, but does depend on its refractive index. Seawater has a higher refractive index than rain water, so the radius of a "rainbow" in sea spray is smaller than a true rainbow. This is visible to the naked eye by a misalignment of these bows.
The amount by which light is refracted depends upon its wavelength, and hence its color. This effect is called dispersion. Blue light (shorter wavelength) is refracted at a greater angle than red light, but due to the reflection of light rays from the back of the droplet, the blue light emerges from the droplet at a smaller angle to the original incident white light ray than the red light. Due to this angle, blue is seen on the inside of the arc of the primary rainbow, and red on the outside.
The light at the back of the raindrop does not undergo total internal reflection, and some light does emerge from the back. However, light coming out the back of the raindrop does not create a rainbow between the observer and the Sun because spectra emitted from the back of the raindrop do not have a maximum of intensity, as the other visible rainbows do, and thus the colors blend together rather than forming a rainbow.

No comments:

Post a Comment